- Búsqueda directa, es decir, la observación de vida microbiana o de cualquier tipo en los cuerpos celestes que la humanidad llegue a visitar.
- Detección indirecta, o la detección de características o marcas distintivas de la vida en cuerpos celestes a través de telescopios avanzados.
- Escucha de señales artificiales, que permitiría detectar verdaderas civilizaciones extraterrestres que emiten radiación electromagnética como un subproducto de su avance tecnológico.
- El planeta Marte, idea respaldada por las teorizadas similitudes pasadas y presentes entre la Tierra y ese planeta: principalmente la ya confirmada presencia de agua en abundancia y de una densa atmósfera en el pasado remoto. Estos hechos, y la cercanía relativa de Marte, han causado que sea el cuerpo celeste más explorado por la astrobiología: ya se ha buscando evidencia de actividad biológica en Marte durante las misiones Viking 1 y Viking 2 de la NASA, con resultados ambiguos pero por lo general considerados como negativos. Hay fuertes controversias sobre estas evidencias de existencia de vida microbiana en Marte. Un experimento de la Viking Mars Lander informó de emisiones de gas desde el caliente suelo marciano, que algunos arguyen son coherentes con la presencia de microbios. Sin embargo, la carencia de evidencias o de corroboración mediante otros experimentos en la Viking Mars Lander, sugieren que una reacción no biológica es la hipótesis más acertada.
- Meteoritos provenientes de Marte que han caído en la Tierra: debido a la cercanía relativa entre Marte y la Tierra y la baja gravedad marciana, se acepta como un hecho que ciertos meteoros son rocas marcianas eyectadas por choques meteóricos mayores, que tras vagar durante millones de años en el espacio, chocan por azar contra nuestro planeta. El 6 de agosto de 1996, expertos de la NASA revelaron públicamente que un meteorito de ese tipo llamado ALH84001, encontrado en la Antártida, mostraba evidencias de una posible actividad biológica microscópica; en particular, restos parecidos a bacterias fosilizadas. Este estudio ha sido ampliamente debatido y criticado en sus conclusiones, manteniéndose hasta el día de hoy en la polémica.
- La luna de Júpiter Europa: desde el paso de las misiones Voyager 1 y Voyager 2 se cree que Europa tiene un océano de agua líquida de varios kilómetros de profundidad, bajo el hielo que cubre su superficie. Debido al hecho comprobado que las fuerzas de marea y la resonancia orbital provocan el calentamiento de Io (la luna mayor más cercana a Júpiter), originando vulcanismo, se cree que Europa presentaría similar actividad volcánica, al ser la segunda en distancia justo después de Io. Por tanto, se cree que podría haber fuentes de calor y vertidos de sustancias químicas en dicho océano. En la Tierra se conocen ejemplos de ecosistemas abisales que dependen de la actividad geotérmica para su subsistencia, de modo que dicha posibilidad en Europa no puede excluirse, llevando incluso a expertos a proponer una misión no tripulada a Europa, consistente en una sonda de alunizaje y un submarino robótico capaz de penetrar la gruesa capa de hielo. Dicha misión no se encuentra actualmente en los planes de ninguna agencia espacial, y de concretarse, se realizaría varias décadas en el futuro.
- La luna Encélado de Saturno. Durante la misión Cassini-Huygens de la NASA y ESA se descubrió que Encélado eyecta grandes cantidades de agua al espacio a través de enormes géiseres, revelando la presencia de un activo criovulcanismo y una muy alta posibilidad de reservorios de agua líquida bajo la superficie helada. Encélado es una sorpresa para la astrobiología y la planetología, pues nadie esperaba encontrar tal actividad en una luna tan pequeña; pero ahora los expertos consideran que podría ser incluso más factible que Europa como lugar de búsqueda de vida, pues se cree que sus capas de hielo superficial son mucho más delgadas, haciendo más fácil acceder al agua subterránea. El hecho conocido de que agua escapa al espacio exterior es una evidencia de ello.
Hasta la fecha sólo hay un ejemplo de observación directa de un planeta extrasolar (véase GQ Lupi); y aunque empieza a ser posible detectar planetas de tamaño equivalente a la Tierra (véase Gliese 876) en otro sistemas, obtener fotografías de ellos todavía no es posible, debido a que los instrumentos disponibles no son lo suficientemente sensibles para separar el enorme brillo de la estrella del de sus planetas. Eso puede cambiar en un futuro cercano, cuando telescopios como el Terrestrial Planet Finder de la NASA o el proyecto Darwin de la ESA entren en funcionamiento. Entre las funciones de tales dispositivos está la de obtener fotografías de los planetas, y detectar propiedades fundamentales de los mismos, como su temperatura, o la presencia o ausencia de atmósfera, así como detalles sobre su composición (mediante espectroscopía).
Existen quienes creen que tales métodos permitirían detectar mundos paralelos donde existan procesos biológicos comparables a los presentes en la Tierra. La idea está respaldada por el hecho de que la luz que refleja nuestro planeta lleva consigo "marcas" que revelan la presencia de la vida; por ejemplo, la presencia de un alto nivel de oxígeno, y ciertas variaciones del espectro infrarrojo, que revelan la presencia de vegetación.
Desde luego, tales métodos de detección asumen que la vida en la Tierra es un caso mediocre, y que las características de la luz reflejada por la Tierra son compartidas por todos los casos. Este método de detección tiene la ventaja de permitir la detección de mundos con vida primitiva (y que no transmiten ondas de radio como lo espera el SETI), con la condición de que dicha vida haya modificado la atmósfera, de manera análoga a como la vida ha cambiado la atmósfera terrestre desde su aparición.
No hay comentarios:
Publicar un comentario
Gracias por su comentario